Inhibitory effect of magnetic Fe3O4 nanoparticles coloaded with homoharringtonine on human leukemia cells in vivo and in vitro

نویسندگان

  • Meiyu Chen
  • Fei Xiong
  • Liang Ma
  • Hong Yao
  • Qinrong Wang
  • Lijun Wen
  • Qian Wang
  • Ning Gu
  • Suning Chen
چکیده

Homoharringtonine (HHT), a natural cephalotaxine alkaloid, has been used in the People's Republic of China for treatment of leukemia for >3 decades. Here, we employed magnetic Fe3O4 nanoparticles (MNP-Fe3O4) to improve the therapeutic effect of HHT and investigated its biological effects. Within a certain range of concentrations, the HHT-MNP-Fe3O4 showed a more enhanced inhibitory effect on the selected myeloid leukemia cell lines than HHT alone. Compared with HHT, HHT-MNP-Fe3O4 could induce more extensive apoptosis in leukemia cells, which also showed more pronounced cell arrests at G0/G1 phase. HHT-MNP-Fe3O4 enhanced antitumor activity by downregulating myeloid cell leukemia-1, which could inhibit the activation of caspase-3 and poly-ADP-ribose polymerase. In vivo experiments using tumor-bearing animal models showed that the mean tumor volume with HHT-MNP-Fe3O4 was significantly smaller than that with HHT alone (193±26 mm3 versus 457±100 mm3, P<0.05), while the mean weight was 0.67±0.03 g versus 1.42±0.56 g (P<0.05). Immunohistochemical study showed fewer myeloid cell leukemia-1-stained cells in mice treated with HHT-MNP-Fe3O4 than with the controls. These findings provide a more efficient delivery system for HHT in the treatment of hematological malignancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Magnetic Fe3O4 Nanoparticles on the Growth of Genetically Manipulated Bacterium, Pseudomonas aeruginosa (PTSOX4)

Background: Magnetite (Fe3O4) nanoparticles are currently one of the important and acceptable magnetic nanoparticles for biomedical applications. To use magnetite nanoparticles for bacteria cell separation, the surface of nanoparticles would be modified for immobilizing of nanoparticles on the surface of bacteria. Functionalization of magnetite nanoparticles is performed by different s...

متن کامل

The Effect of Magnetic Iron Oxide Nanoparticles on Mice Liver and Kidney

Background & Aims: In spite of frequent produce and use of magnetic nanoparticles in biological fields, there are few studies on their side effects, especially under in-vivo conditions. Method: In this research, the effect of the single-dose intraperitoneal injection of DMSA (dimercaptosuccinic acid) coated magnetic iron oxide nanoparticles (Fe3O4) in different doses (50, 100, 200 and 300 mg/kg...

متن کامل

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

Effects of 35 Hz, 2 mT Magnetic Field on Peripheral Blood Lymphocytes of Human In Vitro and Rat In Vivo

In this research we have studied the effects of extremely low frequency magnetic field on the peripheral blood lymphocytes chromosomes of human in vitro and rat in vivo. By this means, we used 60 blood samples of 10 men as well as 40 rats. Of 60 human blood samples ,40 samples (in two group of 20) were selected as test groups and placed into the 2 mT and 35 Hz magnetic field. The blood samples,...

متن کامل

Synthesis and Cytotoxicity Assessment of Gold-coated Magnetic Iron Oxide Nanoparticles

Introduction: One class of magnetic nanoparticles is magnetic iron oxide nanoparticles (MIONs) which has been widely offered due to of their many advantages. Owing to the extensive application of MIONs in biomedicine, before they can be used in vivo, their cytotoxicity have to be investigated. Therefore, there is an urgent need for understanding the potential risks associated with MIONs.Materia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016